Langevin equations for fluctuating surfaces.

نویسندگان

  • Alvin L-S Chua
  • Christoph A Haselwandter
  • Chiara Baggio
  • Dimitri D Vvedensky
چکیده

Exact Langevin equations are derived for the height fluctuations of surfaces driven by the deposition of material from a molecular beam. We consider two types of model: deposition models, where growth proceeds by the deposition and instantaneous local relaxation of particles, with no subsequent movement, and models with concurrent random deposition and surface diffusion. Starting from a Chapman-Kolmogorov equation the deposition, relaxation, and hopping rules of these models are first expressed as transition rates within a master equation for the joint height probability density function. The Kramers-Moyal-van Kampen expansion of the master equation in terms of an appropriate "largeness" parameter yields, according to a limit theorem due to Kurtz [Stoch. Proc. Appl. 6, 223 (1978)], a Fokker-Planck equation that embodies the statistical properties of the original lattice model. The statistical equivalence of this Fokker-Planck equation, solved in terms of the associated Langevin equation, and solutions of the Chapman-Kolmogorov equation, as determined by kinetic Monte Carlo (KMC) simulations of the lattice transition rules, is demonstrated by comparing the surface roughness and the lateral height correlations obtained from the two formulations for the Edwards-Wilkinson [Proc. R. Soc. London Ser. A 381, 17 (1982)] and Wolf-Villain [Europhys. Lett. 13, 389 (1990)] deposition models, and for a model with random deposition and surface diffusion. In each case, as the largeness parameter is increased, the Langevin equation converges to the surface roughness and lateral height correlations produced by KMC simulations for all times, including the crossover between different scaling regimes. We conclude by examining some of the wider implications of these results, including applications to heteroepitaxial systems and the passage to the continuum limit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From the Underdamped Generalized Elastic Model to the Single Particle Langevin Description

Abstract: The generalized elastic model encompasses several linear stochastic models describing the dynamics of polymers, membranes, rough surfaces, and fluctuating interfaces. While usually defined in the overdamped case, in this paper we formally include the inertial term to account for the initial diffusive stages of the stochastic dynamics. We derive the generalized Langevin equation for a ...

متن کامل

Dynamic reaction coordinate in thermally fluctuating environment in the framework of the multidimensional generalized Langevin equations.

A framework recently developed for the extraction of a dynamic reaction coordinate to mediate reactions buried in a multidimensional Langevin equation is extended to the generalized Langevin equations without a priori assumption of the forms of the potential (in general, nonlinearly coupled systems) and the friction kernel. The equation of motion with memory effect can be transformed into an eq...

متن کامل

Fluctuating hydrodynamics for dilute granular gases.

Starting from the kinetic equations for the fluctuations and correlations of a dilute gas of inelastic hard spheres or disks, a Boltzmann-Langevin equation for the one-particle distribution function of the homogeneous cooling state is constructed. This equation is the linear Boltzmann equation with a fluctuating white-noise term. Balance equations for the fluctuating hydrodynamic fields are der...

متن کامل

Existence of Solutions to Nonlinear Langevin Equation Involving Two Fractional Orders with Boundary Value Conditions

Recently, the subject of fractional differential equations has emerged as an important area of investigation. Indeed, we can find numerous applications in viscoelasticity, electrochemistry, control, electromagnetic, porous media, and so forth. In consequence, the subject of fractional differential equations is gaining much importance and attention. For some recent developments on the subject, s...

متن کامل

Temporal Integrators for Fluctuating Hydrodynamics

Including the effect of thermal fluctuations in traditional computational fluid dynamics requires developing numerical techniques for solving the stochastic partial differential equations of fluctuating hydrodynamics. These Langevin equations possess a special fluctuation-dissipation structure that needs to be preserved by spatio-temporal discretizations in order for the computed solution to re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 72 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005